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The equations, boundary conditions, and initial conditions which describe the model of 
the diffusion of a magnetic field in space (an incompressible, current-conducting but not 
heat-conducting medium) can be written in the form 

OH 0 OH OQ ~ /OH\Z 

H ( x  = O, t ) - - r i o  = ate, t t ( x  = oo, t) = O, 

H(x ,  t = O) = 0 ,  Q(z,  t = O) = Qo, 

where • = cz/dao~ is the diffusion coefficient, [Q] = erg/cm 3, the remaining notation is that 
generally employed, and the system of units is Gaussian. 

Some results on a self-similar solution of the equations of the diffusion of a magnetic 
field are given in [1-4]. Unlike [1-4], we will assume that ~ = bQ~, where b and 8 are con- 
stants, defined as a certain mean of the experimental or theoretical dependences of the elec- 
trical resistance on temperature or enthalpy. For the majority of metals this relationship 
is linear (8 = i) when TD~T~Tm, where T D and T m are the Debye temperature and the melting 
point; over a widerrange 8 > i: In particular when T 40.2 T D, ~ =5/4 (• ~, and Q ~ Ta), 
and When T > Tm, 8 > 1 due to the jump in resistance when T = Tm; for certain alloys 8~ 0, 
for high melting point metals 841, and for plasma 8 = --3/2. Here we manly consider values 
of B~0, and also ~ = i. 

Problem (i) is defined by three constants with independent dimensions: 

[ a ]  = L-112J I ' !~  T - l - ~ ,  [ h i  = L 2 + ~ J I - ~ T ~  -I ,  [Qo] = L - 1 M I T - ~ .  

If we take these as the basic units of measurement, the equations are completely dimensionless 
(for this we can assume in all the equations (I) that a, b, and Qo are unity. Hence, it is 
obvious that for specified a and 8 it is sufficient to solve the dimensionless equations com- 
pletely in partial derivatives only once in all. 

In intense magnetic fields, in the region close to the boundary of the half-space, the 
Joule energy Q >> Qo, and the material "forgets" its initial state, and problem (i) is defined 
solely by two parameters, namely a and b. (When 8 = 0, the problem is always defined essen- 
tially by only the parameters a and b, since the energy is measured from an arbitrary initial 
energy.) In this case, as is well known (see, for example, [5, 6]), the problem is self- 
similar. We will obtain a solution of the more general problem (i) by considering the self- 
similar solution as the limiting case as t + ~ or Qo + 0. 

We will replace the variables and the functions in such a way that this replacement re- 
mains true even when Qo = 0. Then, Qo only affects the time taken to transfer to the self- 
similar solution and the boundary of the region where it is applicable. It can be shown that 
the self-similar variable can be represented in the form 

= zldtS ,  w h ~ e 8  = t / 2  + = ~ ,  d = ( a / ' 1 / 8 - ~ ) ~ 5  i/2- 

We will replace the functions as follows: H = at=h(5, t), Q = (aStau/Sn) x q(5, t) + qo, in 
which case we have 

c OH c a 
] = 4~ Ox = 7~ ~ t~-~i ,  "where i : - -  ~h/O~; 

h, q, and i are the "self-slmilar" magnetic field, energy, and current density. 
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oi., - (2) 

where • = [q + Qo/H~/8~)]~; h(~ = 0, t) = i; h(~ = | t) = 0. 

If Qo/H~I8~) << q, the coefficients on the right sides of (2) will be independent of 
time, and the equations will reduce to the self-similar form. However, the solution of the 
boundary value problem for nonlinear ordinary differential equations is a problem which is, 
perhaps, more nontrivlal than the solution of a nonlinear equation in partial derivatives. 
Moreover, one of the methods of solving ordinary equations iS the establishment method, which 
is similar in concept to a nonstationary problem. Hence, it is more convenient to solve the 
nonself-slmilar equations (2) by assuming that for large t the solution is close to the self- 
similar solution. 
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To solve Eqs. (2) when 6 > 0 we will use the following diference scheme: 

h~+l _ hm 

Am = "X,~ t-z/s ~ t,~+u'~l -~ ~.,+z/', A,,.+z .... ".~,c/.+zl",, 

(3) 

where in+z/= = - (hn+z -- hn)IAn+z/2; A m and A n are the steps and m and n are the indices of 
in t and ~. 

Unlike (I), a feature of Eqs. (2) is the presence in it of the first derivatives with 
respect to ~, responsible, in this system of coordinates, for the transfer of the quantities 
h and q. These terms were approximated using a scheme of first-order accuracy. The equa- 
tion of the field diffusion in (3) was solved by the method of pivotal condensation, while 
the energy was found explicitly: assuming q to be from right to left. For small t we solved 
Eq. (1) numerically and then, for t defined by the condition Qo/(H~/8z) ~ i, we made the 
transition to Eqs. (2). 

The results of the solution for u = 1 and 8 = 0, 0.5, and 2 in the form of curves of h, 
i, and q against ~ with T = 30 (T is the time in the system of units {~, b, Qo}) are shown 
in Fig. la-c, illustrating the main behavior when the nonlinearity, i.e., 8, increases. For 
linear diffusion, as is well known (see, for example, [I]), the magnetic field within the 
framework of the model described by Eq. (i) propagates instantaneously over all space, al- 
though with a very sharp (GaussiaD) fall-off of the field, so that the main portion of the 
field energy propagates as x % t I/s. 

For nonlinear diffusion, i.e., when 8 # 0, and in addition when Qo = 0, a clear boundary 
occurs which separates the region with the field from the region without the field. The field 
and the field energy and internal energy respectively propagate from the boundary of the half- 
space in the form of a wave the front of which has a noninfinite velocity. This process is 
very similar to the propagation of a thermal wave [5], so that it is natural to call this a 
magnetic wave. 

The distribution of the field and the internal energy over the front can be found if we 
seek a solution of (i) in:the form H = H(s), Q = Q(s), where s ffi x - vf and vf = const. Equa- 
tions (I) take the form 

a~ a bO ~ aH aQ = bQ~ (Sa_~)~" - - v + ~ - = ~  . "~'s' --vr (4)  

The solution of (4) will be sought in the form H % s ~ with an undefined coefflcieht I, but 
substituting which into (4) we obtain I = 1/28 and cor~espondlngly H % (xf -- x) */aS, Q % (x~ - 
x) */8. The current density on the front j % (xf -- x) */a~-1, so that when-8 < i/2jf ffi 0, - 
when 8 > i/2jf = ~ and when 8 = i/2jf = const # 0; the gradient of the internal energy ~Q/ 

~x % (xf -- x) ~/8-~, whence on the front ~Q/~x = 0 when 8 < i, etc. The numerical results in 
Fig. 1 agree qualitatively with these simple estimates. 

The velocity of the front, generally speaking, is not constant, and is found from the 
self-slmilar variable vf = dxf/dt = ~fd~t ~-*, so that when ~ > 0 the wave propagates into the 
depth of the conductor, when 6 = 0 the wave is a standing wave, and when ~ < 0 the wave 
travels to the boundary of the half-space (this is only possible when 8 < 0). The velocity 
is constant only when ~ ffi l; when ~ < 1 the velocity decreases from infinity to zero, and when 

< 1 it increases. Note that for linear diffusion with ~ = 1/2 the velocity of the front, 
as is well known, decreases, and for nonlinear diffusion with u ffi i, 8 = i, and ~ = 3/2, the 
velocity increases. The coordinate:of the front ~f in the self-similar variables can be 
found from the solution of Eqs. (3) and correspondingly xf = ~fdt ~. When Ho/8~o >i, the 
nonlinearity increases the region of space occupied by the intense field. The current 
density -- physical and not self-similar -- is determined by the tlme-dependence as j 
t-[z/~+=(8-*)], so that it may decrease or increase (when u(l -- 8) > 1/2). 

The finiteness of the velocity of the front when 8 # 0 and Qo = 0 is due to the fact 
that the diffusion coefficient is the coefficient of the leading derivative ~ ffi 0 and the dif- 
ferential parabolic equation is degenerate. When 8 # 0 and Qo # O, ~ # 0 and the velocity of 
the front becomes infinite, but in intense fields when Q > Qo the "self-slmilar" processes 
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TABLE i 

i A:" i AI  Cu Fe Ts i %V 

Qe'10u erg/cmS i ":~ . . . .  ~'J 5,4 7,1 8,8 

l i e ,  MOe 3,7 ] 4,2 ] 4,7 

described above play the main role in the energy transfer processes. The effect of Qo # 0 
reduces to spreading of the front and to its instantaneous propagation. The main fraction 
of the energy is transferred with a velocity defined by the self-slmilar variable (in which 
Qo does not occur) while a small fraction lies between the self-slmilar front and infinity. 

The characteristic transfer time t a to the self-slmilar solution is determined from 
q ~ Qo/(H~/8~), so that when q ~ i, t a ~ (8~Qo/aa) x/a4 or T ~ (8~) x/a4. The relations q(~) 
and i(~) in Fig. 2 illustrate the self-slmilarity of the process, where we show in brackets 
the corresponding instants of time r. The characteristic value of the blurring of the front 
is found from (1); if the solution is sought in the form H = H(x -- vft), then H ~ exp 
(--(x-- xf)/A), where A = ~o/vf. 

From the practical point of view the relation between the internal and the magnetic 
energies is of most interest. We will introduce the coefficient 8 found from Q(x, t) = 
0Ha(x, t)/8~, so that in the region of self-similarity e = q(~)/h2(~). For certain values 
of 4 the dependences of eo E e(~ = 0) = q on 8 are shown in Fig. 3 (with T = 5/0.03*/24). 
When 8 increases, irrespective of 4, eo falls slowly, and when 4 ~ i, eo ~ i. The latter 
result is natural since there is no small parameter in the problem and there is one variable 
with the dimensions of energy. As 4 + 0, e o + ~, analogous to the situation observed for 
linear diffusion [1] and nonlinear diffusion with 8 ~i and ~ = 0 [2], i.e., an increase in 
the rate of growth of the field leads to an increase in j and correspondingly 8. 

Loss of conductivity occurs when p ~ Pc (Pc is the critical density), where the char- 
acteristic value of the energy is the binding energy Qc" From the condition e ~ i, it fol- 
lows that a certain characteristic quantity of the maximum magnetic field H c = (8ZQc)I/2 ex- 
ists. Qc and H c are given for certain elements in Table i. This field may be exceeded ap- 
preciably for several reasons. First, due to the intertia of the scattering of the conduc- 
tor; in this case, the condition t i < t must be satisfied, where the inertia time t i ~ x/c, 
x is the value of the front or the thickness of the conductor, and c is the velocity of 
sound. If x = xf, c ~ T */~ % t a, this condition reduces to t 48-~/2-4 <const, characteristic 
for a conductor. 

Second, the magnetic pressure PH = Ha/8z may exceed the thermodynamic pressure p of the 
material. We will assume that p = Px + P , where p. is the elastic (potential) pressure and 
PT + YQT is the thermal pressure; QX is t~e A potential energy and QT = Q - Qx is the thermal 
energy. When py~0 or PT > PX P = Y(ePH -- QX ) and when epH >> Qc and y0 < 1 the magnetic 
pressure prevents dispersion of the conductor, the conductivity of which must already be 
high. If the material expands so much that it becomes a dense plasma and 8 changes sign, it 
is natural qualitatively that as T + ~ the value of the skin layer and the total energy dis- 
slpitated approach zero. A reduction in e and a change in the relations on the wavefront 
become possible, in particular, due to the thermal conductivity and the radiation. 

On the other hand, under practical conditions the maximum value of the field may be 
limited for technical reasons or due to hydrodynamic effects or instabilities not considered 
here. 

The limitation of the "thickness" R of the half-space with respect to the wavefront xf 
leads to an increase in e. This follows from the fact that the mean current density j ~ H/R 

. . . .  - . . f increases, and correspondingly Q~ ~]=dL We will consider the limiting case which widely 
d 

occurs when a wire explodes, when the current is uniformly distributed over the thickness. 

Then 

O H  1t 0 at ~ OQ hof~ a ~" t ~'~ 
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integrating this equation we obtain that when ~ = I Q = Qo exp(n) and when ~ # i 

in particular, when ~ < I the relation Q = Q(t) is approximately a power relationship, when 
B = i it is exponential, and when B > 1 it is hyperbolic, and as one approaches the corre- 
sponding asymptote the whole conductor explodes. 

In conclusion we note that these results are also applicable to the following cases. 
First, when the field is derived from a conductor: We can consider a model in which the 
initial field H(x) = const, the field is measured from this value, and we use H = -- at ~ as 
the boundary condition. Second, when the heating occurs at constant pressure, we can as- 
sume that Q is the enthaipy and x is a coordinate which moves with the material. 

The author thanks V. F. Demichev for useful discussions. 
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BREAKDOWN VOLTAGES OF INERT GASES AT TEMPERATURES 

OF 300-2000~ 
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S. R. Troitskii, and N. I. Fal'kovskii 

UDC 537.52:533.9.01 

We may assume that as temperature increases, the dielectric strength of inert gases be- 
gins to deviate from Paschen's law 

cb, =/~s/T) (1) 

at lower temperatures than, for example, the dielectric strength of electronegative gases 
[1]. This may be due, in particular, to the fact that in the inert gas there is no capture 
of the thermal electrons emitted by the cathode at high temperatures, i.e., there is no factor 
which will retard the development of breakdown. A confirmation of this may be found in the 
results of an investigation of currents in unheated inert gases at pressures p < 40 kPa [2], 
which disclosed the phenomenon of early breakdown, attributed by the authors to the thermal 
ionization of the gas near the cathode filament, which is incandescent above 2400~ 

George and Messerle [3] obtained breakdown voltages for argon and helium at isothermal 
conditions, T = 1600-2500~ but in a nonuniform field, and therefore no generalized con- 
clusions can be drawn from their results. Measurement of the dielectric strength of argon 
in a shock tube [4] showed that the breakdown of the gas under such conditions is determined 
by the colder boundary layer; this makes interpretationof the results more difficult. Di- 
rect measurements of the pulsed dielectric strength when a stream of gas is heated in a 
plasmotron were carried out in [5]. The results show that up to 2100aK in argon and helium 
Paschen's law remains valid in investigations using unaged electrodes, while investigations 
with aged electrodes yield much higher values than Paschen's law. Since no conclusion con- 
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